1
/*
2
 * Copyright © 2004 Carl Worth
3
 * Copyright © 2006 Red Hat, Inc.
4
 * Copyright © 2009 Chris Wilson
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it either under the terms of the GNU Lesser General Public
8
 * License version 2.1 as published by the Free Software Foundation
9
 * (the "LGPL") or, at your option, under the terms of the Mozilla
10
 * Public License Version 1.1 (the "MPL"). If you do not alter this
11
 * notice, a recipient may use your version of this file under either
12
 * the MPL or the LGPL.
13
 *
14
 * You should have received a copy of the LGPL along with this library
15
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
16
 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
17
 * You should have received a copy of the MPL along with this library
18
 * in the file COPYING-MPL-1.1
19
 *
20
 * The contents of this file are subject to the Mozilla Public License
21
 * Version 1.1 (the "License"); you may not use this file except in
22
 * compliance with the License. You may obtain a copy of the License at
23
 * http://www.mozilla.org/MPL/
24
 *
25
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
26
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
27
 * the specific language governing rights and limitations.
28
 *
29
 * The Original Code is the cairo graphics library.
30
 *
31
 * The Initial Developer of the Original Code is Carl Worth
32
 *
33
 * Contributor(s):
34
 *	Carl D. Worth <cworth@cworth.org>
35
 *	Chris Wilson <chris@chris-wilson.co.uk>
36
 */
37

            
38
/* Provide definitions for standalone compilation */
39
#include "cairoint.h"
40

            
41
#include "cairo-boxes-private.h"
42
#include "cairo-error-private.h"
43
#include "cairo-combsort-inline.h"
44
#include "cairo-list-private.h"
45
#include "cairo-traps-private.h"
46

            
47
#include <setjmp.h>
48

            
49
typedef struct _rectangle rectangle_t;
50
typedef struct _edge edge_t;
51

            
52
struct _edge {
53
    edge_t *next, *prev;
54
    edge_t *right;
55
    cairo_fixed_t x, top;
56
    int dir;
57
};
58

            
59
struct _rectangle {
60
    edge_t left, right;
61
    int32_t top, bottom;
62
};
63

            
64
#define UNROLL3(x) x x x
65

            
66
/* the parent is always given by index/2 */
67
#define PQ_PARENT_INDEX(i) ((i) >> 1)
68
#define PQ_FIRST_ENTRY 1
69

            
70
/* left and right children are index * 2 and (index * 2) +1 respectively */
71
#define PQ_LEFT_CHILD_INDEX(i) ((i) << 1)
72

            
73
typedef struct _sweep_line {
74
    rectangle_t **rectangles;
75
    rectangle_t **stop;
76
    edge_t head, tail, *insert, *cursor;
77
    int32_t current_y;
78
    int32_t last_y;
79
    int stop_size;
80

            
81
    int32_t insert_x;
82
    cairo_fill_rule_t fill_rule;
83

            
84
    cairo_bool_t do_traps;
85
    void *container;
86

            
87
    jmp_buf unwind;
88
} sweep_line_t;
89

            
90
#define DEBUG_TRAPS 0
91

            
92
#if DEBUG_TRAPS
93
static void
94
dump_traps (cairo_traps_t *traps, const char *filename)
95
{
96
    FILE *file;
97
    int n;
98

            
99
    if (getenv ("CAIRO_DEBUG_TRAPS") == NULL)
100
	return;
101

            
102
    file = fopen (filename, "a");
103
    if (file != NULL) {
104
	for (n = 0; n < traps->num_traps; n++) {
105
	    fprintf (file, "%d %d L:(%d, %d), (%d, %d) R:(%d, %d), (%d, %d)\n",
106
		     traps->traps[n].top,
107
		     traps->traps[n].bottom,
108
		     traps->traps[n].left.p1.x,
109
		     traps->traps[n].left.p1.y,
110
		     traps->traps[n].left.p2.x,
111
		     traps->traps[n].left.p2.y,
112
		     traps->traps[n].right.p1.x,
113
		     traps->traps[n].right.p1.y,
114
		     traps->traps[n].right.p2.x,
115
		     traps->traps[n].right.p2.y);
116
	}
117
	fprintf (file, "\n");
118
	fclose (file);
119
    }
120
}
121
#else
122
#define dump_traps(traps, filename)
123
#endif
124

            
125
static inline int
126
253309
rectangle_compare_start (const rectangle_t *a,
127
			 const rectangle_t *b)
128
{
129
253309
    return a->top - b->top;
130
}
131

            
132
static inline int
133
132262
rectangle_compare_stop (const rectangle_t *a,
134
			 const rectangle_t *b)
135
{
136
132262
    return a->bottom - b->bottom;
137
}
138

            
139
static inline void
140
36410
pqueue_push (sweep_line_t *sweep, rectangle_t *rectangle)
141
{
142
    rectangle_t **elements;
143
    int i, parent;
144

            
145
36410
    elements = sweep->stop;
146
36410
    for (i = ++sweep->stop_size;
147
81558
	 i != PQ_FIRST_ENTRY &&
148
37420
	 rectangle_compare_stop (rectangle,
149
37420
				 elements[parent = PQ_PARENT_INDEX (i)]) < 0;
150
7728
	 i = parent)
151
    {
152
7728
	elements[i] = elements[parent];
153
    }
154

            
155
36410
    elements[i] = rectangle;
156
36410
}
157

            
158
static inline void
159
36410
rectangle_pop_stop (sweep_line_t *sweep)
160
{
161
36410
    rectangle_t **elements = sweep->stop;
162
    rectangle_t *tail;
163
    int child, i;
164

            
165
36410
    tail = elements[sweep->stop_size--];
166
36410
    if (sweep->stop_size == 0) {
167
4099
	elements[PQ_FIRST_ENTRY] = NULL;
168
4099
	return;
169
    }
170

            
171
32311
    for (i = PQ_FIRST_ENTRY;
172
56698
	 (child = PQ_LEFT_CHILD_INDEX (i)) <= sweep->stop_size;
173
24387
	 i = child)
174
    {
175
94842
	if (child != sweep->stop_size &&
176
46113
	    rectangle_compare_stop (elements[child+1],
177
46113
				    elements[child]) < 0)
178
	{
179
10305
	    child++;
180
	}
181

            
182
48729
	if (rectangle_compare_stop (elements[child], tail) >= 0)
183
24342
	    break;
184

            
185
24387
	elements[i] = elements[child];
186
    }
187
32311
    elements[i] = tail;
188
}
189

            
190
static inline rectangle_t *
191
39573
rectangle_pop_start (sweep_line_t *sweep_line)
192
{
193
39573
    return *sweep_line->rectangles++;
194
}
195

            
196
static inline rectangle_t *
197
50117
rectangle_peek_stop (sweep_line_t *sweep_line)
198
{
199
50117
    return sweep_line->stop[PQ_FIRST_ENTRY];
200
}
201

            
202
267137
CAIRO_COMBSORT_DECLARE (_rectangle_sort,
203
			rectangle_t *,
204
			rectangle_compare_start)
205

            
206
static void
207
3163
sweep_line_init (sweep_line_t	 *sweep_line,
208
		 rectangle_t	**rectangles,
209
		 int		  num_rectangles,
210
		 cairo_fill_rule_t fill_rule,
211
		 cairo_bool_t	 do_traps,
212
		 void		*container)
213
{
214
3163
    rectangles[-2] = NULL;
215
3163
    rectangles[-1] = NULL;
216
3163
    rectangles[num_rectangles] = NULL;
217
3163
    sweep_line->rectangles = rectangles;
218
3163
    sweep_line->stop = rectangles - 2;
219
3163
    sweep_line->stop_size = 0;
220

            
221
3163
    sweep_line->insert = NULL;
222
3163
    sweep_line->insert_x = INT_MAX;
223
3163
    sweep_line->cursor = &sweep_line->tail;
224

            
225
3163
    sweep_line->head.dir = 0;
226
3163
    sweep_line->head.x = INT32_MIN;
227
3163
    sweep_line->head.right = NULL;
228
3163
    sweep_line->head.prev = NULL;
229
3163
    sweep_line->head.next = &sweep_line->tail;
230
3163
    sweep_line->tail.prev = &sweep_line->head;
231
3163
    sweep_line->tail.next = NULL;
232
3163
    sweep_line->tail.right = NULL;
233
3163
    sweep_line->tail.x = INT32_MAX;
234
3163
    sweep_line->tail.dir = 0;
235

            
236
3163
    sweep_line->current_y = INT32_MIN;
237
3163
    sweep_line->last_y = INT32_MIN;
238

            
239
3163
    sweep_line->fill_rule = fill_rule;
240
3163
    sweep_line->container = container;
241
3163
    sweep_line->do_traps = do_traps;
242
3163
}
243

            
244
static void
245
59792
edge_end_box (sweep_line_t *sweep_line, edge_t *left, int32_t bot)
246
{
247
59792
    cairo_status_t status = CAIRO_STATUS_SUCCESS;
248

            
249
    /* Only emit (trivial) non-degenerate trapezoids with positive height. */
250
59792
    if (likely (left->top < bot)) {
251
59792
	if (sweep_line->do_traps) {
252
	    cairo_line_t _left = {
253
		{ left->x, left->top },
254
		{ left->x, bot },
255
	    }, _right = {
256
		{ left->right->x, left->top },
257
		{ left->right->x, bot },
258
	    };
259
	    _cairo_traps_add_trap (sweep_line->container, left->top, bot, &_left, &_right);
260
	    status = _cairo_traps_status ((cairo_traps_t *) sweep_line->container);
261
	} else {
262
	    cairo_box_t box;
263

            
264
59792
	    box.p1.x = left->x;
265
59792
	    box.p1.y = left->top;
266
59792
	    box.p2.x = left->right->x;
267
59792
	    box.p2.y = bot;
268

            
269
59792
	    status = _cairo_boxes_add (sweep_line->container,
270
				       CAIRO_ANTIALIAS_DEFAULT,
271
				       &box);
272
	}
273
    }
274
59792
    if (unlikely (status))
275
	longjmp (sweep_line->unwind, status);
276

            
277
59792
    left->right = NULL;
278
59792
}
279

            
280
/* Start a new trapezoid at the given top y coordinate, whose edges
281
 * are `edge' and `edge->next'. If `edge' already has a trapezoid,
282
 * then either add it to the traps in `traps', if the trapezoid's
283
 * right edge differs from `edge->next', or do nothing if the new
284
 * trapezoid would be a continuation of the existing one. */
285
static inline void
286
73241
edge_start_or_continue_box (sweep_line_t *sweep_line,
287
			    edge_t	*left,
288
			    edge_t	*right,
289
			    int		 top)
290
{
291
73241
    if (left->right == right)
292
11859
	return;
293

            
294
61382
    if (left->right != NULL) {
295
2976
	if (left->right->x == right->x) {
296
	    /* continuation on right, so just swap edges */
297
288
	    left->right = right;
298
288
	    return;
299
	}
300

            
301
2688
	edge_end_box (sweep_line, left, top);
302
    }
303

            
304
61094
    if (left->x != right->x) {
305
59792
	left->top = top;
306
59792
	left->right = right;
307
    }
308
}
309
/*
310
 * Merge two sorted edge lists.
311
 * Input:
312
 *  - head_a: The head of the first list.
313
 *  - head_b: The head of the second list; head_b cannot be NULL.
314
 * Output:
315
 * Returns the head of the merged list.
316
 *
317
 * Implementation notes:
318
 * To make it fast (in particular, to reduce to an insertion sort whenever
319
 * one of the two input lists only has a single element) we iterate through
320
 * a list until its head becomes greater than the head of the other list,
321
 * then we switch their roles. As soon as one of the two lists is empty, we
322
 * just attach the other one to the current list and exit.
323
 * Writes to memory are only needed to "switch" lists (as it also requires
324
 * attaching to the output list the list which we will be iterating next) and
325
 * to attach the last non-empty list.
326
 */
327
static edge_t *
328
36410
merge_sorted_edges (edge_t *head_a, edge_t *head_b)
329
{
330
    edge_t *head, *prev;
331
    int32_t x;
332

            
333
36410
    prev = head_a->prev;
334
36410
    if (head_a->x <= head_b->x) {
335
22953
	head = head_a;
336
    } else {
337
13457
	head_b->prev = prev;
338
13457
	head = head_b;
339
13457
	goto start_with_b;
340
    }
341

            
342
    do {
343
27960
	x = head_b->x;
344
218547
	while (head_a != NULL && head_a->x <= x) {
345
190587
	    prev = head_a;
346
190587
	    head_a = head_a->next;
347
	}
348

            
349
27960
	head_b->prev = prev;
350
27960
	prev->next = head_b;
351
27960
	if (head_a == NULL)
352
22080
	    return head;
353

            
354
5880
start_with_b:
355
19337
	x = head_a->x;
356
105693
	while (head_b != NULL && head_b->x <= x) {
357
86356
	    prev = head_b;
358
86356
	    head_b = head_b->next;
359
	}
360

            
361
19337
	head_a->prev = prev;
362
19337
	prev->next = head_a;
363
19337
	if (head_b == NULL)
364
14330
	    return head;
365
    } while (1);
366
}
367

            
368
/*
369
 * Sort (part of) a list.
370
 * Input:
371
 *  - list: The list to be sorted; list cannot be NULL.
372
 *  - limit: Recursion limit.
373
 * Output:
374
 *  - head_out: The head of the sorted list containing the first 2^(level+1) elements of the
375
 *              input list; if the input list has fewer elements, head_out be a sorted list
376
 *              containing all the elements of the input list.
377
 * Returns the head of the list of unprocessed elements (NULL if the sorted list contains
378
 * all the elements of the input list).
379
 *
380
 * Implementation notes:
381
 * Special case single element list, unroll/inline the sorting of the first two elements.
382
 * Some tail recursion is used since we iterate on the bottom-up solution of the problem
383
 * (we start with a small sorted list and keep merging other lists of the same size to it).
384
 */
385
static edge_t *
386
36410
sort_edges (edge_t  *list,
387
	    unsigned int  level,
388
	    edge_t **head_out)
389
{
390
    edge_t *head_other, *remaining;
391
    unsigned int i;
392

            
393
36410
    head_other = list->next;
394

            
395
36410
    if (head_other == NULL) {
396
	*head_out = list;
397
	return NULL;
398
    }
399

            
400
36410
    remaining = head_other->next;
401
36410
    if (list->x <= head_other->x) {
402
36410
	*head_out = list;
403
36410
	head_other->next = NULL;
404
    } else {
405
	*head_out = head_other;
406
	head_other->prev = list->prev;
407
	head_other->next = list;
408
	list->prev = head_other;
409
	list->next = NULL;
410
    }
411

            
412
62276
    for (i = 0; i < level && remaining; i++) {
413
25866
	remaining = sort_edges (remaining, i, &head_other);
414
25866
	*head_out = merge_sorted_edges (*head_out, head_other);
415
    }
416

            
417
36410
    return remaining;
418
}
419

            
420
static edge_t *
421
10544
merge_unsorted_edges (edge_t *head, edge_t *unsorted)
422
{
423
10544
    sort_edges (unsorted, UINT_MAX, &unsorted);
424
10544
    return merge_sorted_edges (head, unsorted);
425
}
426

            
427
static void
428
10544
active_edges_insert (sweep_line_t *sweep)
429
{
430
    edge_t *prev;
431
    int x;
432

            
433
10544
    x = sweep->insert_x;
434
10544
    prev = sweep->cursor;
435
10544
    if (prev->x > x) {
436
	do {
437
8707
	    prev = prev->prev;
438
8707
	} while (prev->x > x);
439
    } else {
440
8407
	while (prev->next->x < x)
441
2505
	    prev = prev->next;
442
    }
443

            
444
10544
    prev->next = merge_unsorted_edges (prev->next, sweep->insert);
445
10544
    sweep->cursor = sweep->insert;
446
10544
    sweep->insert = NULL;
447
10544
    sweep->insert_x = INT_MAX;
448
10544
}
449

            
450
static inline void
451
15839
active_edges_to_traps (sweep_line_t *sweep)
452
{
453
15839
    int top = sweep->current_y;
454
    edge_t *pos;
455

            
456
15839
    if (sweep->last_y == sweep->current_y)
457
	return;
458

            
459
15839
    if (sweep->insert)
460
10544
	active_edges_insert (sweep);
461

            
462
15839
    pos = sweep->head.next;
463
15839
    if (pos == &sweep->tail)
464
936
	return;
465

            
466
14903
    if (sweep->fill_rule == CAIRO_FILL_RULE_WINDING) {
467
	do {
468
	    edge_t *left, *right;
469
	    int winding;
470

            
471
71360
	    left = pos;
472
71360
	    winding = left->dir;
473

            
474
71360
	    right = left->next;
475

            
476
	    /* Check if there is a co-linear edge with an existing trap */
477
73031
	    while (right->x == left->x) {
478
1671
		if (right->right != NULL) {
479
		    assert (left->right == NULL);
480
		    /* continuation on left */
481
		    left->top = right->top;
482
		    left->right = right->right;
483
		    right->right = NULL;
484
		}
485
1671
		winding += right->dir;
486
1671
		right = right->next;
487
	    }
488

            
489
71360
	    if (winding == 0) {
490
279
		if (left->right != NULL)
491
45
		    edge_end_box (sweep, left, top);
492
279
		pos = right;
493
279
		continue;
494
	    }
495

            
496
	    do {
497
		/* End all subsumed traps */
498
148421
		if (unlikely (right->right != NULL))
499
28863
		    edge_end_box (sweep, right, top);
500

            
501
		/* Greedily search for the closing edge, so that we generate
502
		 * the * maximal span width with the minimal number of
503
		 * boxes.
504
		 */
505
148421
		winding += right->dir;
506
148421
		if (winding == 0 && right->x != right->next->x)
507
71081
		    break;
508

            
509
77340
		right = right->next;
510
	    } while (TRUE);
511

            
512
71081
	    edge_start_or_continue_box (sweep, left, right, top);
513

            
514
71081
	    pos = right->next;
515
71360
	} while (pos != &sweep->tail);
516
    } else {
517
	do {
518
2160
	    edge_t *right = pos->next;
519
2160
	    int count = 0;
520

            
521
	    do {
522
		/* End all subsumed traps */
523
2250
		if (unlikely (right->right != NULL))
524
42
		    edge_end_box (sweep, right, top);
525

            
526
		    /* skip co-linear edges */
527
2250
		if (++count & 1 && right->x != right->next->x)
528
2160
		    break;
529

            
530
90
		right = right->next;
531
	    } while (TRUE);
532

            
533
2160
	    edge_start_or_continue_box (sweep, pos, right, top);
534

            
535
2160
	    pos = right->next;
536
2160
	} while (pos != &sweep->tail);
537
    }
538

            
539
14903
    sweep->last_y = sweep->current_y;
540
}
541

            
542
static inline void
543
72820
sweep_line_delete_edge (sweep_line_t *sweep, edge_t *edge)
544
{
545
72820
    if (edge->right != NULL) {
546
28793
	edge_t *next = edge->next;
547
28793
	if (next->x == edge->x) {
548
639
	    next->top = edge->top;
549
639
	    next->right = edge->right;
550
	} else
551
28154
	    edge_end_box (sweep, edge, sweep->current_y);
552
    }
553

            
554
72820
    if (sweep->cursor == edge)
555
8333
	sweep->cursor = edge->prev;
556

            
557
72820
    edge->prev->next = edge->next;
558
72820
    edge->next->prev = edge->prev;
559
72820
}
560

            
561
static inline cairo_bool_t
562
36410
sweep_line_delete (sweep_line_t	*sweep, rectangle_t *rectangle)
563
{
564
    cairo_bool_t update;
565

            
566
36410
    update = TRUE;
567
36410
    if (sweep->fill_rule == CAIRO_FILL_RULE_WINDING &&
568
35258
	rectangle->left.prev->dir == rectangle->left.dir)
569
    {
570
1455
	update = rectangle->left.next != &rectangle->right;
571
    }
572

            
573
36410
    sweep_line_delete_edge (sweep, &rectangle->left);
574
36410
    sweep_line_delete_edge (sweep, &rectangle->right);
575

            
576
36410
    rectangle_pop_stop (sweep);
577
36410
    return update;
578
}
579

            
580
static inline void
581
36410
sweep_line_insert (sweep_line_t	*sweep, rectangle_t *rectangle)
582
{
583
36410
    if (sweep->insert)
584
25866
	sweep->insert->prev = &rectangle->right;
585
36410
    rectangle->right.next = sweep->insert;
586
36410
    rectangle->right.prev = &rectangle->left;
587
36410
    rectangle->left.next = &rectangle->right;
588
36410
    rectangle->left.prev = NULL;
589
36410
    sweep->insert = &rectangle->left;
590
36410
    if (rectangle->left.x < sweep->insert_x)
591
31892
	sweep->insert_x = rectangle->left.x;
592

            
593
36410
    pqueue_push (sweep, rectangle);
594
36410
}
595

            
596
static cairo_status_t
597
3163
_cairo_bentley_ottmann_tessellate_rectangular (rectangle_t	**rectangles,
598
					       int			  num_rectangles,
599
					       cairo_fill_rule_t	  fill_rule,
600
					       cairo_bool_t		 do_traps,
601
					       void			*container)
602
{
603
    sweep_line_t sweep_line;
604
    rectangle_t *rectangle;
605
    cairo_status_t status;
606
    cairo_bool_t update;
607

            
608
3163
    sweep_line_init (&sweep_line,
609
		     rectangles, num_rectangles,
610
		     fill_rule,
611
		     do_traps, container);
612
3163
    if ((status = setjmp (sweep_line.unwind)))
613
	return status;
614

            
615
3163
    update = FALSE;
616

            
617
3163
    rectangle = rectangle_pop_start (&sweep_line);
618
    do {
619
10544
	if (rectangle->top != sweep_line.current_y) {
620
	    rectangle_t *stop;
621

            
622
10544
	    stop = rectangle_peek_stop (&sweep_line);
623
35528
	    while (stop != NULL && stop->bottom < rectangle->top) {
624
24984
		if (stop->bottom != sweep_line.current_y) {
625
4149
		    if (update) {
626
4125
			active_edges_to_traps (&sweep_line);
627
4125
			update = FALSE;
628
		    }
629

            
630
4149
		    sweep_line.current_y = stop->bottom;
631
		}
632

            
633
24984
		update |= sweep_line_delete (&sweep_line, stop);
634
24984
		stop = rectangle_peek_stop (&sweep_line);
635
	    }
636

            
637
10544
	    if (update) {
638
7381
		active_edges_to_traps (&sweep_line);
639
7381
		update = FALSE;
640
	    }
641

            
642
10544
	    sweep_line.current_y = rectangle->top;
643
	}
644

            
645
	do {
646
36410
	    sweep_line_insert (&sweep_line, rectangle);
647
36410
	} while ((rectangle = rectangle_pop_start (&sweep_line)) != NULL &&
648
33247
		 sweep_line.current_y == rectangle->top);
649
10544
	update = TRUE;
650
10544
    } while (rectangle);
651

            
652
14589
    while ((rectangle = rectangle_peek_stop (&sweep_line)) != NULL) {
653
11426
	if (rectangle->bottom != sweep_line.current_y) {
654
4342
	    if (update) {
655
4333
		active_edges_to_traps (&sweep_line);
656
4333
		update = FALSE;
657
	    }
658
4342
	    sweep_line.current_y = rectangle->bottom;
659
	}
660

            
661
11426
	update |= sweep_line_delete (&sweep_line, rectangle);
662
    }
663

            
664
3163
    return CAIRO_STATUS_SUCCESS;
665
}
666

            
667
cairo_status_t
668
_cairo_bentley_ottmann_tessellate_rectangular_traps (cairo_traps_t *traps,
669
						     cairo_fill_rule_t fill_rule)
670
{
671
    rectangle_t stack_rectangles[CAIRO_STACK_ARRAY_LENGTH (rectangle_t)];
672
    rectangle_t *stack_rectangles_ptrs[ARRAY_LENGTH (stack_rectangles) + 3];
673
    rectangle_t *rectangles, **rectangles_ptrs;
674
    cairo_status_t status;
675
    int i;
676

            
677
   assert (traps->is_rectangular);
678

            
679
    if (unlikely (traps->num_traps <= 1)) {
680
        if (traps->num_traps == 1) {
681
            cairo_trapezoid_t *trap = traps->traps;
682
            if (trap->left.p1.x > trap->right.p1.x) {
683
                cairo_line_t tmp = trap->left;
684
                trap->left = trap->right;
685
                trap->right = tmp;
686
            }
687
        }
688
	return CAIRO_STATUS_SUCCESS;
689
    }
690

            
691
    dump_traps (traps, "bo-rects-traps-in.txt");
692

            
693
    rectangles = stack_rectangles;
694
    rectangles_ptrs = stack_rectangles_ptrs;
695
    if (traps->num_traps > ARRAY_LENGTH (stack_rectangles)) {
696
	rectangles = _cairo_malloc_ab_plus_c (traps->num_traps,
697
					      sizeof (rectangle_t) +
698
					      sizeof (rectangle_t *),
699
					      3*sizeof (rectangle_t *));
700
	if (unlikely (rectangles == NULL))
701
	    return _cairo_error (CAIRO_STATUS_NO_MEMORY);
702

            
703
	rectangles_ptrs = (rectangle_t **) (rectangles + traps->num_traps);
704
    }
705

            
706
    for (i = 0; i < traps->num_traps; i++) {
707
	if (traps->traps[i].left.p1.x < traps->traps[i].right.p1.x) {
708
	    rectangles[i].left.x = traps->traps[i].left.p1.x;
709
	    rectangles[i].left.dir = 1;
710

            
711
	    rectangles[i].right.x = traps->traps[i].right.p1.x;
712
	    rectangles[i].right.dir = -1;
713
	} else {
714
	    rectangles[i].right.x = traps->traps[i].left.p1.x;
715
	    rectangles[i].right.dir = 1;
716

            
717
	    rectangles[i].left.x = traps->traps[i].right.p1.x;
718
	    rectangles[i].left.dir = -1;
719
	}
720

            
721
	rectangles[i].left.right = NULL;
722
	rectangles[i].right.right = NULL;
723

            
724
	rectangles[i].top = traps->traps[i].top;
725
	rectangles[i].bottom = traps->traps[i].bottom;
726

            
727
	rectangles_ptrs[i+2] = &rectangles[i];
728
    }
729
    /* XXX incremental sort */
730
    _rectangle_sort (rectangles_ptrs+2, i);
731

            
732
    _cairo_traps_clear (traps);
733
    status = _cairo_bentley_ottmann_tessellate_rectangular (rectangles_ptrs+2, i,
734
							    fill_rule,
735
							    TRUE, traps);
736
    traps->is_rectilinear = TRUE;
737
    traps->is_rectangular = TRUE;
738

            
739
    if (rectangles != stack_rectangles)
740
	free (rectangles);
741

            
742
    dump_traps (traps, "bo-rects-traps-out.txt");
743

            
744
    return status;
745
}
746

            
747
cairo_status_t
748
5017
_cairo_bentley_ottmann_tessellate_boxes (const cairo_boxes_t *in,
749
					 cairo_fill_rule_t fill_rule,
750
					 cairo_boxes_t *out)
751
{
752
    rectangle_t stack_rectangles[CAIRO_STACK_ARRAY_LENGTH (rectangle_t)];
753
    rectangle_t *stack_rectangles_ptrs[ARRAY_LENGTH (stack_rectangles) + 3];
754
    rectangle_t *rectangles, **rectangles_ptrs;
755
    rectangle_t *stack_rectangles_chain[CAIRO_STACK_ARRAY_LENGTH (rectangle_t *) ];
756
5017
    rectangle_t **rectangles_chain = NULL;
757
    const struct _cairo_boxes_chunk *chunk;
758
    cairo_status_t status;
759
    int i, j, y_min, y_max;
760

            
761
5017
    if (unlikely (in->num_boxes == 0)) {
762
1122
	_cairo_boxes_clear (out);
763
1122
	return CAIRO_STATUS_SUCCESS;
764
    }
765

            
766
3895
    if (in->num_boxes == 1) {
767
732
	if (in == out) {
768
732
	    cairo_box_t *box = &in->chunks.base[0];
769

            
770
732
	    if (box->p1.x > box->p2.x) {
771
3
		cairo_fixed_t tmp = box->p1.x;
772
3
		box->p1.x = box->p2.x;
773
3
		box->p2.x = tmp;
774
	    }
775
	} else {
776
	    cairo_box_t box = in->chunks.base[0];
777

            
778
	    if (box.p1.x > box.p2.x) {
779
		cairo_fixed_t tmp = box.p1.x;
780
		box.p1.x = box.p2.x;
781
		box.p2.x = tmp;
782
	    }
783

            
784
	    _cairo_boxes_clear (out);
785
	    status = _cairo_boxes_add (out, CAIRO_ANTIALIAS_DEFAULT, &box);
786
	    assert (status == CAIRO_STATUS_SUCCESS);
787
	}
788
732
	return CAIRO_STATUS_SUCCESS;
789
    }
790

            
791
3163
    y_min = INT_MAX; y_max = INT_MIN;
792
6584
    for (chunk = &in->chunks; chunk != NULL; chunk = chunk->next) {
793
3421
	const cairo_box_t *box = chunk->base;
794
39831
	for (i = 0; i < chunk->count; i++) {
795
36410
	    if (box[i].p1.y < y_min)
796
3997
		y_min = box[i].p1.y;
797
36410
	    if (box[i].p1.y > y_max)
798
7481
		y_max = box[i].p1.y;
799
	}
800
    }
801
3163
    y_min = _cairo_fixed_integer_floor (y_min);
802
3163
    y_max = _cairo_fixed_integer_floor (y_max) + 1;
803
3163
    y_max -= y_min;
804

            
805
3163
    if (y_max < in->num_boxes) {
806
855
	rectangles_chain = stack_rectangles_chain;
807
855
	if (y_max > ARRAY_LENGTH (stack_rectangles_chain)) {
808
3
	    rectangles_chain = _cairo_malloc_ab (y_max, sizeof (rectangle_t *));
809
3
	    if (unlikely (rectangles_chain == NULL))
810
		return _cairo_error (CAIRO_STATUS_NO_MEMORY);
811
	}
812
855
	memset (rectangles_chain, 0, y_max * sizeof (rectangle_t*));
813
    }
814

            
815
3163
    rectangles = stack_rectangles;
816
3163
    rectangles_ptrs = stack_rectangles_ptrs;
817
3163
    if (in->num_boxes > ARRAY_LENGTH (stack_rectangles)) {
818
105
	rectangles = _cairo_malloc_ab_plus_c (in->num_boxes,
819
					      sizeof (rectangle_t) +
820
					      sizeof (rectangle_t *),
821
					      3*sizeof (rectangle_t *));
822
105
	if (unlikely (rectangles == NULL)) {
823
	    if (rectangles_chain != stack_rectangles_chain)
824
		free (rectangles_chain);
825
	    return _cairo_error (CAIRO_STATUS_NO_MEMORY);
826
	}
827

            
828
105
	rectangles_ptrs = (rectangle_t **) (rectangles + in->num_boxes);
829
    }
830

            
831
3163
    j = 0;
832
6584
    for (chunk = &in->chunks; chunk != NULL; chunk = chunk->next) {
833
3421
	const cairo_box_t *box = chunk->base;
834
39831
	for (i = 0; i < chunk->count; i++) {
835
	    int h;
836

            
837
36410
	    if (box[i].p1.x < box[i].p2.x) {
838
36041
		rectangles[j].left.x = box[i].p1.x;
839
36041
		rectangles[j].left.dir = 1;
840

            
841
36041
		rectangles[j].right.x = box[i].p2.x;
842
36041
		rectangles[j].right.dir = -1;
843
	    } else {
844
369
		rectangles[j].right.x = box[i].p1.x;
845
369
		rectangles[j].right.dir = 1;
846

            
847
369
		rectangles[j].left.x = box[i].p2.x;
848
369
		rectangles[j].left.dir = -1;
849
	    }
850

            
851
36410
	    rectangles[j].left.right = NULL;
852
36410
	    rectangles[j].right.right = NULL;
853

            
854
36410
	    rectangles[j].top = box[i].p1.y;
855
36410
	    rectangles[j].bottom = box[i].p2.y;
856

            
857
36410
	    if (rectangles_chain) {
858
23823
		h = _cairo_fixed_integer_floor (box[i].p1.y) - y_min;
859
23823
		rectangles[j].left.next = (edge_t *)rectangles_chain[h];
860
23823
		rectangles_chain[h] = &rectangles[j];
861
	    } else {
862
12587
		rectangles_ptrs[j+2] = &rectangles[j];
863
	    }
864
36410
	    j++;
865
	}
866
    }
867

            
868
3163
    if (rectangles_chain) {
869
855
	j = 2;
870
4152
	for (y_min = 0; y_min < y_max; y_min++) {
871
	    rectangle_t *r;
872
3297
	    int start = j;
873
27120
	    for (r = rectangles_chain[y_min]; r; r = (rectangle_t *)r->left.next)
874
23823
		rectangles_ptrs[j++] = r;
875
3297
	    if (j > start + 1)
876
1470
		_rectangle_sort (rectangles_ptrs + start, j - start);
877
	}
878

            
879
855
	if (rectangles_chain != stack_rectangles_chain)
880
3
	    free (rectangles_chain);
881

            
882
855
	j -= 2;
883
    } else {
884
2308
	_rectangle_sort (rectangles_ptrs + 2, j);
885
    }
886

            
887
3163
    _cairo_boxes_clear (out);
888
3163
    status = _cairo_bentley_ottmann_tessellate_rectangular (rectangles_ptrs+2, j,
889
							    fill_rule,
890
							    FALSE, out);
891
3163
    if (rectangles != stack_rectangles)
892
105
	free (rectangles);
893

            
894
3163
    return status;
895
}