Lines
88.5 %
Functions
100 %
Branches
79.07 %
/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */
/*
* Copyright © 2004 Carl Worth
* Copyright © 2006 Red Hat, Inc.
* Copyright © 2008 Chris Wilson
* Copyright © 2014 Intel Corporation
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
* The Original Code is the cairo graphics library.
* The Initial Developer of the Original Code is Keith Packard
* Contributor(s):
* Carl D. Worth <cworth@cworth.org>
* Chris Wilson <chris@chris-wilson.co.uk>
*/
#include "cairoint.h"
#include "cairo-line-inline.h"
#include "cairo-slope-private.h"
static int
line_compare_for_y_against_x (const cairo_line_t *a,
int32_t y,
int32_t x)
{
int32_t adx, ady;
int32_t dx, dy;
cairo_int64_t L, R;
if (x < a->p1.x && x < a->p2.x)
return 1;
if (x > a->p1.x && x > a->p2.x)
return -1;
adx = a->p2.x - a->p1.x;
dx = x - a->p1.x;
if (adx == 0)
return -dx;
if (dx == 0 || (adx ^ dx) < 0)
return adx;
dy = y - a->p1.y;
ady = a->p2.y - a->p1.y;
L = _cairo_int32x32_64_mul (dy, adx);
R = _cairo_int32x32_64_mul (dx, ady);
return _cairo_int64_cmp (L, R);
}
* We need to compare the x-coordinates of a pair of lines for a particular y,
* without loss of precision.
* The x-coordinate along an edge for a given y is:
* X = A_x + (Y - A_y) * A_dx / A_dy
* So the inequality we wish to test is:
* A_x + (Y - A_y) * A_dx / A_dy ∘ B_x + (Y - B_y) * B_dx / B_dy,
* where ∘ is our inequality operator.
* By construction, we know that A_dy and B_dy (and (Y - A_y), (Y - B_y)) are
* all positive, so we can rearrange it thus without causing a sign change:
* A_dy * B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx * A_dy
* - (Y - A_y) * A_dx * B_dy
* Given the assumption that all the deltas fit within 32 bits, we can compute
* this comparison directly using 128 bit arithmetic. For certain, but common,
* input we can reduce this down to a single 32 bit compare by inspecting the
* deltas.
* (And put the burden of the work on developing fast 128 bit ops, which are
* required throughout the tessellator.)
* See the similar discussion for _slope_compare().
lines_compare_x_for_y_general (const cairo_line_t *a,
const cairo_line_t *b,
int32_t y)
/* XXX: We're assuming here that dx and dy will still fit in 32
* bits. That's not true in general as there could be overflow. We
* should prevent that before the tessellation algorithm
* begins.
int32_t dx = 0;
int32_t adx = 0, ady = 0;
int32_t bdx = 0, bdy = 0;
enum {
HAVE_NONE = 0x0,
HAVE_DX = 0x1,
HAVE_ADX = 0x2,
HAVE_DX_ADX = HAVE_DX | HAVE_ADX,
HAVE_BDX = 0x4,
HAVE_DX_BDX = HAVE_DX | HAVE_BDX,
HAVE_ADX_BDX = HAVE_ADX | HAVE_BDX,
HAVE_ALL = HAVE_DX | HAVE_ADX | HAVE_BDX
} have_dx_adx_bdx = HAVE_ALL;
have_dx_adx_bdx &= ~HAVE_ADX;
bdy = b->p2.y - b->p1.y;
bdx = b->p2.x - b->p1.x;
if (bdx == 0)
have_dx_adx_bdx &= ~HAVE_BDX;
dx = a->p1.x - b->p1.x;
if (dx == 0)
have_dx_adx_bdx &= ~HAVE_DX;
#define L _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (ady, bdy), dx)
#define A _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (adx, bdy), y - a->p1.y)
#define B _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (bdx, ady), y - b->p1.y)
switch (have_dx_adx_bdx) {
default:
case HAVE_NONE:
return 0;
case HAVE_DX:
/* A_dy * B_dy * (A_x - B_x) ∘ 0 */
return dx; /* ady * bdy is positive definite */
case HAVE_ADX:
/* 0 ∘ - (Y - A_y) * A_dx * B_dy */
return adx; /* bdy * (y - a->top.y) is positive definite */
case HAVE_BDX:
/* 0 ∘ (Y - B_y) * B_dx * A_dy */
return -bdx; /* ady * (y - b->top.y) is positive definite */
case HAVE_ADX_BDX:
/* 0 ∘ (Y - B_y) * B_dx * A_dy - (Y - A_y) * A_dx * B_dy */
if ((adx ^ bdx) < 0) {
} else if (a->p1.y == b->p1.y) { /* common origin */
cairo_int64_t adx_bdy, bdx_ady;
/* ∴ A_dx * B_dy ∘ B_dx * A_dy */
adx_bdy = _cairo_int32x32_64_mul (adx, bdy);
bdx_ady = _cairo_int32x32_64_mul (bdx, ady);
return _cairo_int64_cmp (adx_bdy, bdx_ady);
} else
return _cairo_int128_cmp (A, B);
case HAVE_DX_ADX:
/* A_dy * (A_x - B_x) ∘ - (Y - A_y) * A_dx */
if ((-adx ^ dx) < 0) {
return dx;
} else {
cairo_int64_t ady_dx, dy_adx;
ady_dx = _cairo_int32x32_64_mul (ady, dx);
dy_adx = _cairo_int32x32_64_mul (a->p1.y - y, adx);
return _cairo_int64_cmp (ady_dx, dy_adx);
case HAVE_DX_BDX:
/* B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx */
if ((bdx ^ dx) < 0) {
cairo_int64_t bdy_dx, dy_bdx;
bdy_dx = _cairo_int32x32_64_mul (bdy, dx);
dy_bdx = _cairo_int32x32_64_mul (y - b->p1.y, bdx);
return _cairo_int64_cmp (bdy_dx, dy_bdx);
case HAVE_ALL:
/* XXX try comparing (a->p2.x - b->p2.x) et al */
return _cairo_int128_cmp (L, _cairo_int128_sub (B, A));
#undef B
#undef A
#undef L
lines_compare_x_for_y (const cairo_line_t *a,
/* If the sweep-line is currently on an end-point of a line,
* then we know its precise x value (and considering that we often need to
* compare events at end-points, this happens frequently enough to warrant
* special casing).
HAVE_NEITHER = 0x0,
HAVE_AX = 0x1,
HAVE_BX = 0x2,
HAVE_BOTH = HAVE_AX | HAVE_BX
} have_ax_bx = HAVE_BOTH;
int32_t ax = 0, bx = 0;
if (y == a->p1.y)
ax = a->p1.x;
else if (y == a->p2.y)
ax = a->p2.x;
else
have_ax_bx &= ~HAVE_AX;
if (y == b->p1.y)
bx = b->p1.x;
else if (y == b->p2.y)
bx = b->p2.x;
have_ax_bx &= ~HAVE_BX;
switch (have_ax_bx) {
case HAVE_NEITHER:
return lines_compare_x_for_y_general (a, b, y);
case HAVE_AX:
return -line_compare_for_y_against_x (b, y, ax);
case HAVE_BX:
return line_compare_for_y_against_x (a, y, bx);
case HAVE_BOTH:
return ax - bx;
static int bbox_compare (const cairo_line_t *a,
const cairo_line_t *b)
int32_t amin, amax;
int32_t bmin, bmax;
if (a->p1.x < a->p2.x) {
amin = a->p1.x;
amax = a->p2.x;
amin = a->p2.x;
amax = a->p1.x;
if (b->p1.x < b->p2.x) {
bmin = b->p1.x;
bmax = b->p2.x;
bmin = b->p2.x;
bmax = b->p1.x;
if (amax < bmin)
if (amin > bmax)
return +1;
int
_cairo_lines_compare_at_y (const cairo_line_t *a,
int y)
cairo_slope_t sa, sb;
int ret;
if (cairo_lines_equal (a, b))
/* Don't bother solving for abscissa if the edges' bounding boxes
* can be used to order them.
ret = bbox_compare (a, b);
if (ret)
return ret;
ret = lines_compare_x_for_y (a, b, y);
_cairo_slope_init (&sa, &a->p1, &a->p2);
_cairo_slope_init (&sb, &b->p1, &b->p2);
return _cairo_slope_compare (&sb, &sa);